REU home






A menu of representative projects is listed below; we expect these and/or other projects will be offered to prospective REU participants in 2018.


Mentor: Andrew Baker
Project: Cosmic Variance in a Deep HI Survey with MeerKAT
Description: Determining how galaxies' neutral atomic gas (HI) content varies as a function of mass, environment, and redshift is an important prerequisite for understanding how galaxies evolve over cosmic time. South Africa is currently building a powerful new "MeerKAT" array of radio telescopes, with which an international team will soon be conducting a several-thousand-hour survey of HI in emission out to z ~ 1.4. A potentially important source of uncertainty in the results of the LADUMA survey will be cosmic variance — the fact that identically executed surveys at two different positions on the sky can yield different results if they sample the large-scale structure of galaxies in different ways. In this project, the REU student will compare a priori predictions of cosmic variance with the results "observed" from galaxy evolution simulations, in order to develop strategies for characterizing its importance and mitigating its effects.

Mentor: Carlton Pryor
Project: Characterizing the Space Motions of the Satellite Galaxies of our Milky Way Galaxy
Description: The number of satellite galaxies around our Milky Way Galaxy and their distributions in space and luminosity are considered important tests of galaxy formation models. While simulations based on the standard cold dark matter cosmology now mostly pass these tests, an apparent planar distribution of the satellites remains hard to explain. We are just completing a project using the Hubble Space Telescope to increase the number of satellites with measured proper motions, hence space velocities, from 9 to 16. In this project, the REU student will use these data to determine the orbits of the satellites around our Galaxy and compare the properties of the orbits to those predicted by simulations of galaxy formation. This comparison will provide a new way to test the simulations.

Mentor: Rachel Somerville
Project: The Role of Supermassive Black Holes in Galaxy Evolution
Description: We now have strong evidence that many galaxies host supermassive black holes in their centers, with masses of millions to billions of times the mass of our Sun. Black holes can grow by accreting gas from their surroundings, and very efficiently produce energetic radiation. Many puzzles surround these objects: How did they form? Why do some BH accrete rapidly, while others are dormant? How does the energy they emit affect their galactic hosts? What is the connection between galaxy properties and formation history, and black hole mass and accretion rate? The REU student will help to answer some of these questions by analyzing state-of-the-art computer simulations of the formation of galaxies and their black holes, and comparing the results with observations from the Hubble Space Telescope and other facilities.

Nuclear and high energy physics

Mentor: Matt Buckley
Project: Dark Matter Searches at the Large Hadron Collider
Description: Most of the matter in the Universe is an unknown substance called "dark matter." It is possible that dark matter could be produced in the high-energy collisions occurring at the Large Hadron Collider (LHC); however, as dark matter is characterized by its invisibility, looking for it in the LHC's detectors is difficult. In this project, the REU student will use computer simulations of LHC collisions to improve dark matter search techniques.

Mentors: Yuri Gershtein, Eva Halkiadakis, & Amit Lath
Project: Research with the Compact Muon Solenoid Experiment at the Large Hadron Collider
Description: High energy particle physics is an exciting field, filled with many yet-to-be-answered questions about the world around us. The highest energy ever collider in the world, the Large Hadron Collider (LHC), collides protons at a high energy and provides us with the tools to answer some of these questions. State-of-the-art technology used by the Compact Muon Solenoid (CMS) detector at the LHC plays a key role in this effort. The REU student working on this project will have the opportunity to work on a range of possible searches (e.g., for new particles, new phenomena, and supersymmetry) in CMS data, as well as make contributions to studies for the High-Luminosity-LHC upgrade.

Condensed matter physics

Mentor: Girsh Blumberg
Project: Spectroscopic Studies of Strongly Correlated Materials
Description: Strong coupling between electrons in "strongly correlated" materials is associated with many scientifically important and technologically useful phenomena, including superconductivity, ordered charge and spin density phases, and quantum magnetism. Understanding the behavior of strongly correlated materials presents a great intellectual challenge and is critical to developing new technologies. Part of Blumberg's research program is geared to investigating the basic mechanisms responsible for these unconventional properties by scattering light (i.e., photons) from the materials while tuning the materials' properties through their novel phases by chemical doping, changing temperature, and applying external magnetic fields. The goal of the REU project is to better understand the conditions responsible for the emerging properties of these materials. The REU student will be responsible for the acqusition of light scattering data from a particular superconductor sample, and for analysis of the data.

Mentor: Jak Chakhalian
Project: Artificial Quantum Materials with Strong Interactions
Description: Recently, "designer" quantum materials, grown in atomic layer-by-layer fashion, have been realized, sparking groundbreaking new scientific insights. These artificial structures, such as complex oxide heterostructures, are highly interesting building blocks for realizing emergent quantum states and a new generation of technologies — if we can access, study, and ultimately control their phases under technologically relevant temperature and pressure. For this project, the REU student will participate in the design and growth of multilayer materials composed of atomic layers of superconductors, magnets, and ferroelectrics and will be responsible for advanced characterization, data modeling, and analysis of magneto-transport data.

Mentor: Weida Wu
Project: Emergent Properties in Metal-Organic Hybrids
Description: Metal-organic frameworks (MOFs) are single crystals that combine very different properties from metal ions and organic molecules. The practically unlimited possibilities of combing organic and inorganic components allow materials scientists to tailor their physical properties by design. Among many attractive functionalities in MOFs, the cross-coupling between electric and magnetic dipoles is appealing for informatics such as miniature data storage. Therefore, it is imperative to understand the fundamental mechanism of such cross-coupling in MOFs. This REU project will explore the interesting properties of various promising MOF single crystals using scanning probe microscopy, which the REU student will acquire and analyze.

Last edited November 6, 2017.