REU home






We describe below nine projects in four research areas and provide links to the web pages of the associated faculty mentors. We expect that all nine of these projects will be offered to prospective REU participants in 2023.


Mentor: Andrew Baker
Project: Constraining the HI Content of the Circumgalactic Medium — no longer available
Description: Determining how galaxies' neutral atomic gas (HI) content varies as a function of mass, environment, and redshift is an important prerequisite for understanding how galaxies evolve over cosmic time. South Africa's powerful new "MeerKAT" array of radio telescopes is now being used to survey HI in emission out to z ~ 1.4 through the Looking At the Distant Universe with the MeerKAT Array (LADUMA) survey. An important question, raised by recent numerical simulations, is what fraction of a galaxy's HI emission will come from clumps in its circumgalactic medium, rather than from the interior of the galaxy itself. To address this question, the REU student will "stack" (i.e., average) MeerKAT data at the known positions and redshifts of galaxies in the LADUMA field, in order to recover statistical HI detections. By repeating this exercise with different stacking apertures (scaled to galaxies' optical sizes) and seeing how stacked HI profiles change, the student will constrain the typical contribution of the circumgalactic medium to a galaxy's total HI luminosity and mass.

Nuclear and high energy physics

Mentor: Ron Gilman
Project: Proton Radius Puzzle — no longer available
Description: We are taking data to study the charge distribution of the proton, and its radius. We scatter a mixed beam of muons, electrons, and protons from a hydrogen target. Comparing muon and electron scattering provides a test of lepton universality. Assuming their equivalence, the muons and electrons determine the charge distribution and the radius, and also test higher order theory corrections to the determination. The pions test our ability to understand the strong interaction, Quantum ChromoDynamics, in the regime where it cannot be directly solved by the usual perturbation theory, but can be solved by an approach referred to as effective field theory. We are currently analyzing the initial period of scattering data to develop analysis techniques and software, to understand and calibrate the beam, and to optimize detector performance. We expect to take additional data throughout 2022 - 2023. A student working on this project can get involved in various analysis projects commensurate with their interests. All work will lead to an understanding of subatomic physics techniques as well as a beginning to understanding relativity and quantum mechanics.

Mentor: Amit Lath
Project: Research with the Compact Muon Solenoid Experiment at the Large Hadron Collider— no longer available>
Description: High energy particle physics is an exciting field, filled with many yet-to-be-answered questions about the world around us. The highest energy ever collider in the world, the Large Hadron Collider (LHC), collides protons at a high energy and provides us with the tools to answer some of these questions. State-of-the-art technology used by the Compact Muon Solenoid (CMS) detector at the LHC plays a key role in this effort. The REU student working on this project will have the opportunity to work on a range of possible searches for new particles and new phenomena such as those predicted by supersymmetry in current CMS data, as well as help design innovative new search techniques for the challenging environment of the upcoming High-Luminosity LHC (HL-LHC).

Mentor: Andrew Mastbaum
Project: Accelerator-based neutrino physics — no longer available
Description: Neutrinos are the most abundant massive fundamental particles in our universe, but among the least understood. Measuring neutrino properties expands our knowledge of matter's most fundamental constituents and may help explain the very existence of our matter-filled universe. Our group is involved with an array of experiments using particle accelerator-produced neutrino beams to study the properties of neutrinos and their interactions with other matter, including the upcoming Short-Baseline Neutrino Program hosted at Fermilab and DUNE. A student working on this project will work with simulated data and/or data from detector prototypes to study the capabilities of these upcoming experiments for discerning neutrino interaction models and measuring neutrino oscillations. Students will gain experience with the physics of neutrinos and neutrino detectors as well as data analysis techniques and software tools.


Mentor: Jak Chakhalian
Project: What we can learn about particle physics from condensed matter
Description: The research project will be conducted at the newly constructed site which hosts a unique quantum phenomena discovery platform Q-DiP. The facility integrates in-situ with growth by laser MBE, two powerful spectroscopic probes - ARPES and EELS. A prospective REU student will participate in data analysis related to topological properties of quantum materials with Python and Igor Pro.

Mentor: Srivatsan Chakram
Project: Quantum information processing with superconducting circuits and cavities — no longer available
Description: Over the past two decades, various engineered quantum systems, such as trapped ions, neutral atoms, defects in solid materials, optical photons, and superconducting quantum systems, have made significant advances in performance and complexity. These developments have opened up the possibility of using quantum phenomena, such as superposition and entanglement, to develop transformative technologies in computing, communication, and sensing. Our group is addressing fundamental challenges in superconducting quantum computing by developing quantum information processors and simulators that combine superconducting circuits with very low-loss multimode superconducting microwave cavities. We are exploring ways to improve quantum hardware by developing new device architectures that are resistant to errors, integrating supporting superconducting circuits with improved circuit coherences and faster gate speeds, and developing new quantum control techniques. A student working on a project in our group will gain experience in topics ranging from low-noise cryogenic microwave measurements, nanofabrication of superconducting circuits, and calculating quantum properties of superconducting circuits and systems. They can also gain experience with finite element electromagnetic simulations of microwave systems and applying optimal control techniques to realize quantum gate operations on superconducting quantum systems.

Mentor: Weida Wu
Project: Exploring topological edge states in quantum materials — no longer available
Description: The focus of this research program is to explore the fascinating topological edge states on single crystal surfaces of quantum materials with topological electronic structures using low temperature scanning tunneling microscopy (STM). The REU participant will participate the research activities including sample preparation, data acquisition, data analysis and modelling.

Physics education

Mentor: Geraldine Cochran
Project: Using Social Network Analysis to Understand Community Development for Engineering Majors — no longer available
Description: Prior research in physics education and engineering education indicate that engagement in a community is important to the success of STEM majors. Further, enagement within a community has been shown to be a predictor of student academic sucess in introductory STEM courses. The current project involves investigating community development for engineering majors utilizing the Community Cultural Wealth (CCW) Framework. In the CCW framework, several forms of capital including familial, linguistic, social, resistace, and aspirational capital all contribute to an individuals' cultural wealth - which serves as an asset in one's academic journey. We will investigate the community development of engineering majors using surveys and interviews. The REU student will conduct interviews and analyze survey data.

Last edited April 12, 2023.